Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines
نویسندگان
چکیده
Cu,H2-bis-porphyrin (Cu,H2-Por2), in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir-Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.
منابع مشابه
Absolute configurational assignments of secondary amines by CD-sensitive dimeric zinc porphyrin host.
A general chiroptical protocol for determination of absolute configuration of secondary amines including acyclic and cyclic aliphatic amines, aromatic amines, amino acids, and amino alcohols is described. The chiral substrate is linked to the achiral carrier moiety (3-N-Boc-amino-propyl-N-Boc-amino)acetic acid 1 (BocHNCH(2)CH(2)CH(2)BocNCH(2)COOH), which after deprotection, yields a bidentate c...
متن کاملSpectroelectrochemical evidence for communication within a laterally-bridged dimanganese(III) bis-porphyrin.
Electronic coupling between the porphyrin units of a laterally-bridged dimanganese(III) bis-porphyrin 2 is explored using electrochemistry, spectroelectrochemistry and resonance-Raman spectroscopy. It is found that strong electronic interactions between the manganese(III) ion and the porphyrin macrocycle enhance the perturbations experienced by these bis-porphyrin systems when compared to relat...
متن کاملCopper-catalyzed three- five- or seven-component coupling reactions: the selective synthesis of cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)methylenediamines based on a Strecker-type synthesis.
We have demonstrated that a cooperative catalytic system comprised of CuCl and Cu(OTf)(2) could be used to effectively catalyse the three-, five- and seven-component coupling reactions of aliphatic or aromatic amines, formaldehyde, and trimethylsilyl cyanide (TMSCN), and selectively produce in good yields the corresponding cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)m...
متن کاملExcitonic coupling interactions in the self-assembly of perylene-bridged bis(β-cyclodextrin)s and porphyrin.
A supramolecular self-assembly has been constructed by perylene-bridged bis(β-cyclodextrin)s with water-soluble porphyrin through hydrophobic interactions, showing strong excitonic coupling interactions between perylene backbones and included porphyrins.
متن کاملChemistry surrounding monomeric copper(I) methyl, phenyl, anilido, ethoxide, and phenoxide complexes supported by N-heterocyclic carbene ligands: reactivity consistent with both early and late transition metal systems.
Monomeric copper(I) alkyl complexes that possess the N-heterocyclic carbene (NHC) ligands IPr, SIPr, and IMes [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] react with amines or alcohols to release alkane and form the corresponding monomeric copper(I) amido, alkoxide, or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015